Coe 132 programming and problem solving

Programming and Problem solving Lecture 4

Israa S. Al-Furati

Programming in C++

There are multiple compilers and text editors could be used to run C++ programming. These may differ from system to system. We will use CodeBlockes editor in this course.

3.1 Basic Input/Output

```
Cin : standard input stream
```

```
1 int age;
2 cin >> age
Cout : standard output stream
1 cout << "Output sentence"; // prints Output sentence on
screen
2 cout << 120; // prints number 120 on screen
3 cout << x; // prints the value of x on
screen
```

screen

Simple input/output program:

///input output example

```
#include <iostream>
using namespace std;
```

```
int main ()
{
    int a,b;
    cout << "Please enter the first number: ";
    cin >> a;
    cout << " Please enter the second number: "<< b;
    cin>> b;
```

return 0;

}

3.2Arithmetic Operators

There are following arithmetic operators supported by C++ language – Assume variable A holds 10 and variable B holds 20, then

Coe 132 programming and problem solving

Operator	Description	Example	
+	Adds two operands	A + B will give 30	
-	Subtracts second operand from the first	A - B will give -10	
*	Multiplies both operands	A * B will give 200	
/	Divides numerator by de- numerator	B / A will give 2	
%	Modulus Operator and remainder of after an integer division	B % A will give 0	
++	Increment operator, increases integer value by one	A++ will give 11	
	Decrement operator, decreases integer value by one	A will give 9	

```
// C++ arithmetic
#include <iostream>
using namespace std;
int main()
{
  float biscuit;
  int babies;
  cout << "Enter a number: ";</pre>
  cin >> biscuit;
  cout << "Enter another number: ";</pre>
  cin >> babies;
  cout << " biscuit = " << biscuit << "; babies = " << babies <<</pre>
endl;
  cout << " biscuit + babies = " << biscuit + babies << endl;</pre>
  cout << " biscuit - babies = " << biscuit - babies << endl;</pre>
  cout << " biscuit * babies = " << biscuit * babies << endl;</pre>
  cout << " biscuit / babies = " << biscuit / babies << endl;</pre>
```

return 0;}

3.3 Relational Operators

There are following relational operators supported by C++ language Assume variable A holds 10 and variable B holds 20, then –

Operator	Description	Example	
==	Checks if the values of two operands are equal or not, if yes then condition becomes true.	(A == B) is not true.	
!=	Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.	(A != B) is true.	
>	Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.	(A > B) is not true.	
<	Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.	(A < B) is true.	
>=	Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.	$(A \ge B)$ is not true.	
<=	Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.	(A <= B) is true.	
N			

relational operators
#include<iostream>

11

Coe 132 programming and problem solving

```
using namespace std;
int main()
{
int a=10,b=20,c=10;
if(a>b)
cout<<"a is greater"<<endl;
if(a<b)
cout<<"a is smaller"<<endl;
if(a<=c)
cout<<"a is less than/equal to c"<<endl;
if(a>=c)
cout<<"a is less than/equal to c"<<endl;</pre>
```

return 0;}

3.4 Logical Operators

There are following logical operators supported by C++ language. Assume variable A holds 1 and variable B holds 0, then -

Operator	Description	Example	
&&	Called Logical AND operator. If both the operands are non-zero, then condition becomes true.	(A && B) is false.	
	Called Logical OR Operator. If any of the two operands is non- zero, then condition becomes true.	(A B) is true.	
!	Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true, then Logical NOT operator will make false.	!(A && B) is true.	

// Logical Operators
#include <iostream>
 using namespace std;

Coe 132 programming and problem solving

```
int main()
{
    cout << "Enter a number: ";
    int value;
    cin >> value ;

    if (value > 10 && value < 20)
        cout << "Your value is between 10 and 20" << endl;
    else
        cout << "Your value is not between 10 and 20" << endl;
    return 0;
}</pre>
```

3.5 Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and $^$ are as follows –

p	q	p & q	p q	p ^ q
0	0	0	0	0
0	1	0	1	1
1	1	1	1	0
1	0	0	1	1

Assume if A = 60; and B = 13; now in binary format they will be as follows

A = 0011 1100

 $B = 0000 \ 1101$

 $A\&B = 0000\ 1100$

 $A|B = 0011 \ 1101$

 $A^B = 0011\ 0001$

~A = 1100 0011

\/ (~) one's compliment operator
#include <iostream>

Coe 132 programming and problem solving

```
using namespace std;
int main()
{
   // 12 = 0000 1100
   unsigned int numl = 12
   int num2 = 0;
   num2 = \sim num1;
   cout << "Value of num2 is: " << num2 << endl ;</pre>
   return 0;
}
    #include <iostream>
      using namespace std;
      int main()
      {
                                  // 10 = 0000 1010
   unsigned int num1 = 10;
   unsigned int num2 = 12;
                                   // 12 = 0000 1100
   int num3 = 0;
                                 // 8 = 0000 1000
   num3 = num1 \& num2;
   cout << "Value of num3 is : " << num3 << endl ;</pre>
   return 0;
}
```

3.6 Mathematical Functions

{

C++ provides various mathematical functions like log(), modf(), pow(), sqrt(), sin(), cos(), abs() etc. that aid in mathematical calculations. <math.h> library should be called.

Example shows few of the mathematical operations: // C++ Mathematical Functions #include<iostream.h> #include<conio.h> #include<math.h> int main()

Coe 132 programming and problem solving

```
Short int si = 100;
int i = -1000;
long int li = 8;
float f = 230.47;
double d = 200.347;
```

cout<<"sqrt(si): "<<sqrt(si)<<endl; cout<<"pow(li, 3): "<<pow(li, 3)<<endl; cout<<"sin(d): "<<sin(d)<<endl; cout<<"abs(i): "<<abs(i)<<endl; cout<<"floor(d): "<<floor(d)<<endl; cout<<"sqrt(f): "<<sqrt(f)<<endl; cout<<"pow(d, 2): "<<pow(d, 2)<<endl;</pre>

return 0;

}
The output of the above C++ program
sqrt(si): 10
pow(li, 3): 512
sin(d):-0.6555
abs(i) : 1000
floor(d): 200
sqrt(f):15.181
pow(d, 2): 40138.92